
MBS!R 86-3393

/nan iy f] m'-tri

0/IS-73J Ex-h- 39T/&

Pa<\<LS 30
v 3

A Low Level Robot Interface: The
High Speed Host Interface

Marilyn Nash man

FILE COPY

oo not saw
U.S. DEPARTMENT OF COMMERCE
National Bureau cf Standards

National Engineering Laboratory

Center for Manufacturing Engineering •

Gaithersburg, MD 20899

June 1 936

iS.S. DEPARTMENT OF COMMERCE

NATIONAL 9UREAU OF STANDARDS

NBSIR 86-3393

A LOW LEVEL ROBOT INTERFACE: THE
HIGH SPEED HOST INTERFACE

Marilyn Nashman

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

National Engineering Laboratory

Center for Manufacturing Engineering

Gaithersburg, MD 20899

June 1 986

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

,

A LOW LEVEL ROBOT INTERFACE: THE HIGH
SPEED HOST INTERFACE

Marilyn Naahman

Sensory-Interactive Robotics Group

National Bureau of Standards

Gaithersburg, MD 20899

ABSTRACT

This paper describes the High Speed Host Interface (HSHI) developed

jointly by the Robot Systems Division at the National Bureau of Standards and

the American Robot Corporation (AR). The High Speed Host Interface provides

an interface between .American Robot’s software and hardware and the user's

software at the lowest level of control—joint position, joint velocity, motor posi-

tion, or motor velocity. It can operate at an update rate of 256 times per second

or can be used at a cartesian level of control at an .update rate of 7.5 times per

sefcond. The paper discusses the design of HSHI and its capabilities as well as

some possible applications for such a system”.

June 3 1986

Table of Contents

1. Introduction 1

2. System Design and Protocol 2

3. Commands 4

4. Uses for the High Speed Host Interface 8

5. Conclusion 9

6. References 10

Figures

Figure 1: The American Robot Merlin Arm

Figure 2: Control System Inputs and Outputs

Figure 3: The Robot Origin and Coordinate Axes

Figure 4: HSHI Architecture

Figure 5: Optimal Host Program Design

Tables

Table 1 : Common Memory Map

Table 2 : Common Memory Handshake Buffer

Table 3 : HSHI Commands

Appendix A: HSHI Data Structures

Appendix B: Joint/Motor Conversions

Appendix C: Subroutine Library

A LOW LEVEL ROBOT INTERFACE: THE HIGH

SPEED HOST INTERFACE

Marilyn Nashman

Sensory-Interactive Robotics Group

National Bureau of Standards

Gaithersburg, MD 20899

1. Introduction

The HSHI is a low level interface designed to run on American Robot Corporations’s Merlin

Robot System, a six degree of freedom robot arm used in research as well as in industrial applica-

tions. Although this commercial equipment was purchased by the National Bureau of Standards

and subsequently modified with the cooperation of the manufacturer, it is not the only equipment

which might have been adapted to obtain equivalent performance. The six stepper motor driven

axes are mounted on a base and consist of a waist joint, a shoulder joint, an elbow, a wrist rotate

axis, a wrist flex axis, and a hand roll axis. (Figure 1) The robot, as supplied by the American

Robot Corporation, includes not only the arm but a control system which can be programmed by

using a teach pendant or ARSMART, a language developed by AR [3]. ARSMART permits the

user to teach the robot arm points and to move from point to point in a defined order: it is used

primarily for "pick and place” operations. While this capability is useful in many industrial

applications, it does not lend itself to the area of intelligent machines. At the National Bureau of

Standards’ Robot Systems Division, we are interested in developing real-time sensory interactive

control of robots[l,4]. A real-time sensory interactive control system must decide its output

actions based on both the command goal and the sensory data that measure the state of the

environment. (Figure 2) In addition these results must be output to the control system at fast

- 2 -

update rates to ensure an effective and stable response. It was with that concept in mind that the

High Speed Host Interface was designed and developed.

The basic concept of the HSHI is to provide the user access to the lowest level of the control

system through his own program control. Thus the user or host can control motor velocity and

motor position at a rate of 256 updates per second, as well as being able to control robot position

and orientation relative to a cartesian coordinate frame located at the center of the robot (Figure

3) at a rate of 7.5 times per second. The command update rate is defined to be the delay between

the controller’s receiving a command from the host and its execution of that command-- including

the appropriate return of feedback status information. The types of feedback provided by the

HSHI will be discussed further when the interface commands are described.

2. System Design and Protocol

The physical structure of the American Robot controller consists of a Motorola 68000

microprocessor and seven independent 6809 microprocessors [3]. These processors are boused in an

electronic enclosure which includes a disk drive system that boots a Regulus Unix system and

runs the HSHI software. Each of the 6809 processors is dedicated to a single task such as control-

ling a single motor. The software used with each of the 6809s is stored in PROM (Programmable

Read Only Memory) chips located on the same circuit board as the 6809 which uses it. The HSHI

software runs on the 68000 system and is stored on a floppy diskette. The 68000 system commun-

icates with each of the 6809 microprocessors through shared memory over a Versabus. Using

HSHI, these interprocessor communications and protocol are invisible to the host programs.

User programs are written in a combination of C language and 8086/8087 assembly

language on a Multibus based CPM-86 operating system. The executable program is downloaded

to an Intel 8086 microprocessor which is resident in AR’s electronic enclosure. Data is passed

between the Multibus and the Versabus systems via a Halversa Synergist board. (Figure 4)

The communication protocol between the host and the HSHI is implemented using the con-

cept of a common memory area: a specific section of memory is designated as the common

- 3 -

memory area and is available to both systems for reading or writing commands and response feed-

back [4,5]. The common memory area has been divided into command and response buffers

defined at specific addresses in the memory open to both processors. Table 1 lists the buffers used

and their common memory definitions. The command buffers associated with each request will

contain all pertinent data related to that request, e.g. desired position and orientation, motor

velocities, joint positions, etc. The response buffers are written into by the HSHI and will contain

current status information relevant to the type of information requested, e.g. cartesian position,

motor position and velocity, cycle clock time, etc. The types of information that can be either

read from or written to these addresses is predefined. The host program has write permission into

all command buffers, while the HSHI program has read only access to those areas. Conversely,

the HSHI program has write permission into the response buffers, while the host programs can

only read those areas.

Unlike the control systems described by Barbera, Fitzgerald and Albus [2,4,5] in which read-

ing and writing into the common memory area are permitted only at specific time intervals, the

HSHI allows communication asynchronously. The HSHI is prepared to accept and act upon a new

command as soon as it has completed processing its previous command. Depending on the type of

command issued, communication can take place as often as every 4 milliseconds, or as infre-

quently as every 128 milliseconds. The host or the HSHI determine whether it can read or write

from (into) the common memory area by examining a semaphore in the common memory

handshake buffer. This flag can be set to either of two values: setting it to "HOST” implies that

only the user program may read or write into common memory, and all status information is

guaranteed to be updated as of the time tag associated with that data. When the flag is set to

"HSHI”, only the American Robot program has permission to read or write data. When either

side has completed accessing the memory, the semaphore is set for the other user. Since all com-

munication is based on a "command-response-command- response...” scenario, data integrity is

insured. Neither command requests nor responses may be queued since the step-lock mode of

operation is enforced by the protocol/

- 4 -

The remainder of the 16 byte handshake buffer is divided between the host and the HSHI.

The host is responsible for setting a coded command byte which not only instructs the HSHI

about the type of action it is to perform, but also provides a pointer to the appropriate data

buffer in common memory from which to extract (or insert) the information it will require. In

addition, the host sets the current cycle time (time of command) and updates the "total-

commands-sent” value. Only after the relevant command data has been copied into the common

memory buffer area, the command value set, and the remaining bookkeeping functions performed,

does the user turn control to the HSHI by setting the "HSHI” flag in the handshake buffer. Table

1 lists the buffer areas associated with each of the commands. Table 2 describes the contents of

the handshake buffer area, and Table 3 lists the defined commands and their coded command

values.

The HSHI processor uses the handshake buffer to extract the command value and the

relevant common memory data in. order to perform the required task. Upon completion, it sets a

"SUCCESS” or "FAIL” flag in the buffer’s response word, as well as echoing the command value,

«

starting cycle time and cycle time of command completion. Feedback information is written into

the appropriate buffers, and the transaction is completed by setting the "HOST” flag.

3. Commands

There are thirteen codes which define requests to the HSHI processor; these can be divided

into two categories: commands for action and requests for status. This section briefly describes

each of the command functions. Appendix A describes the structure and format of the input or

output associated with each command value.

Command 1 (Set Servo Parameters) is a request for resetting the robot arm’s servo parameters.

By issuing this instruction, the maximum acceleration, the maximum velocity, and the gain on

each of the six motor axes can be individually adjusted in real-time. In this manner, the robot’s

performance can be observed and optimized for a particular application.

- 5 -

Command 2 (Command Cartesian Position) is used for positioning the robot arm at a point in

cartesian space relative to the robot’s base frame. The goal position and orientation refer to the

position and orientation of the tool tip which is defined to be three and one half inches forward of

the wrist axis. The X, Y, Z coordinates are expressed in inches, and roll, pitch and yaw are

expressed in radians. If the goal point cannot be reached in a single execution cycle, the arm will

continue to move at its maximum speed until that goal position is achieved. HSHI requires 128

milliseconds to perform the necessary computations required in decomposing a cartesian request to

servo level commands. Note: Command 4 (Read Cartesian Position) must be issued before any

cartesian level command if that command has been preceeded by a joint or motor level com-

mand.

Command 3 (Read Motor Position and Velocity) is a status request on the state of each of the six

motors which can be executed at the rate of once every 4 milliseconds. The values returned in

the pre-assigned memory buffers include the position of each of the motors expressed in motor

encoder ticks, the velocity of each motor expressed in ticks per second, and the 6809 cycle time

when each motor was read. A motor encoder tick is defined to be a unique incremental motor

position equal to 1/2000 of a stepper motor shaft revolution. This command is implicitly per-

formed whenever a motor position or motor velocity command is issued but is also provided as a

stand-alone feature.

Command 4 (Read Cartesian Position) is a status request which returns the X,Y,Z coordinates of

the tool tip in inches and its roll, pitch and yaw in radians. In addition, the current joint angles

and motor position values are updated.

Command 5 (Command Joint Position) is used to position each joint in space; its inputs consist of

/

six joint angles in radians. If the goal point commanded cannot be reached in a four millisecond

- 6 -

time interval, the arm will continue to move towards its goal at maximum velocity and accelera-

tion.

Command 6 (Command Joint Velocity) requests specific joint velocities for each of the six robot

joints. The velocities are expressed in radians per second. After a joint velocity command has

been issued, the joints will continue to move at the commanded velocity until either another joint

velocity command is received, a new motor velocity command is received (command 9), or a halt

command (command 16) is issued. Because of the floating point arithmetic involved in this com-

mand, it is not considered to be high speed but can be executed once every 20 milliseconds.

Motor position, motor velocity, joint position, joint velocity and the 6809 cycle count buffers are

all updated as a result of the execution of this request.

Command 7 (Read Joint Position and Velocity) is a request for reading position and velocity

status on each of the robot joints. The position of each joint is expressed in radians, and the

velocity is expressed in radians per second. Because of the floating point computations involved,

this command can only be executed every 20 milliseconds. In addition to returning the requested

joint values, motor position, motor velocity, and 6809 cycle times are also updated. This com-

mand is built into commands 5 and 6, but is also provided as a stand-alone feature.

Command 8 (Command Motor Position) is the recommended fast mode of commanding motor

position. The input for this command can either be expressed in radians or in motor encoder

ticks. Command 8 differs from command 5 in that the HSHI can accept, act upon, and return

status to the host within a four millisecond time interval. This "fast” mode of operation is made

possible because the host program provides a utility program written for the 8087 Numeric Data

Processor which converts joint angles expressed in radians (floating point variables) into motor

encoder ticks (integers), or conversely, converts motor ticks into radians for more meaningful

- 7 -

status information. Appendix B describes the conversion formulas used for this purpose. At the

completion of this command, motor position, motor velocity and 6809 cycle time are updated.

Command 9 (Command Motor Velocity) is the fast version of command 6, i.e. commanding motor

or joint velocity. When the input to this command is expressed as joint velocities in radians, the

host program converts these values into encoder ticks per second. The status information

returned, motor position and motor velocity, can similarly be converted from encoder ticks to

radians.

Command 10: Undefined

Command 11: Undefined
. e

Command 12 (Set Cartesian Speed) is a request for setting the arm speed. It is issued prior to

performing interpolation commands (commands 13 or 14). The value sent to HSHI represents the

speed in inches per second that the arm is to travel.

Command 13 (Joint Interpolator) is a cartesian position request. When the host defines a goal

point relative to the tool tip in cartesian space, a trajectory consisting of n subintervals, where n

is a function of the requested arm speed, is planned by the HSHI. The path computed is based on

the joint that has the farthest distance to travel: that joint is driven at top speed, and the

remaining five joints are set so that all six joints will arrive at the goal point simultaneously. The

processing time for computing each intermediate goal point in the interpolated path is 128 mil-

liseconds. The advantage of this trajectory is that the arm will consistently be able to achieve its

maximum velocity. If the host requests a position that the arm cannot reach, the "FAIL” flag

- 8 -

will be set in the common memory handshake buffer, and the trajectory motion will not be ini-

tiated. Note: Command 4 (Read Cartesian Position) must be issued before any cartesian level

command if that command has been preceeded by a joint or motor level command.

Command 14 (Straight Line Interpolator) is a cartesian position request. The host program again

supplies a goal point for the tool tip in cartesian coordinates relative to the robot’s base frame. In

this mode however, the HSIH plans a trajectory such that the tool tip will always travel in a

straight line between its start position and its goal position. As with command 13, the processing

time for each intermediate position is 128 milliseconds, and an error message will be returned if

the goal point cannot be reached by the robot arm. Note: Command 4 (Read Cartesian Position)

must be issued before any cartesian level command if that command has been preceeded by a

joint or motor level command.

Command 15: Undefined

Command 16 (Halt Servoing) is a command to halt arm motion after either joint or motor veloci-

ties have been commanded. It effectively commands each motor to a velocity of zero motor

encoder ticks per second without the host having to supply input parameters.

4. Uses for the High Speed Host Interface

The unique capability of the HSH1 to receive and process servo level commands in a four

millisecond time interval makes it an especially useful tool in implementing certain low level con-

trol system tasks. In [6], Featherstone presents algorithms for calculating robot joint variables

from the position and velocity of the end effector and vice versa. His algorithms translate the

path of the end effector into joint or motor values which are the values under control. The suc-

cess of this method is very dependent on the ability to perform the required calculations in real-

- 9 -

time and to rapidly update feedback information in the form of joint velocities to the robot. This

paper does not address the problems associated with real-time computation, but by taking advan-

tage of hardware math accelerators, parallel processing, optimized code, and look up tables for tri-

gonometric functions, updated commands can be computed and delivered to the HSHI
, and

motor position and velocity status returned to the host in the minimal four millisecond time inter-

val. Figure 5 describes the recommended optimal use of the HSHI. Portions of Featherstone’s

algorithms have been implemented on the AR Merlin robot in the Robot Systems Division’s robot

laboratory using the HSHI.

A hierarchical control system based upon the HSHI is a logical extension of this project
[7J.

The lowest level of the hierarchy, the HSHI, would accept position or velocity commands in

motor coordinates, and return motor position and velocity status. The next level could be a low

level control and would provide real time position or velocity commands in motor encoder ticks to

the HSHI. Algorithms such as those developed by Featherstone [6] would be implemented at this

£•

level. The commands sent to the arm could be developed by interpreting trajectories provided by

a still higher control level or by servoing on sensory feedback.

5. Conclusion

The High Speed Host Interface developed jointly by the Robot Systems Division at the

National Bureau of Standards and the American Robot Corporation provides access to the servo

level of control by accepting position or velocity commands in motor or joint coordinates and

returning relevant status information 256 times per second. At a slightly higher level, commands

expressed in cartesian coordinates can be processed 7.5 times per second. A handshake protocol

and common memory area have been designed and implemented which insure proper communica-

tion between the host and HSHI programs. A library of C language subroutines and 8086/8087

assembly language routines (Appendix C) has been developed to test and implement the features

of the HSHI.

- 10 -

References

1. J. Albus, A.Barbera, M.L.Fitzgerald, M.Nashman, "Sensory Interactive Robots", Presented at

the 31st General Assembly of the International Institution for Production Engineering

Research, September, 1981.

2. J. Albus, C. McLean, A. Barbera, M.L. Fitzgerald,”An Architecture For Real-Time Sensory

Interactive Control of Robots in a Manufacturing Facility”, IFAC Information Control

Problems in Manufacturing Technology, 1982.

3. American Robot Corp., "Merlin Robot System, Operator and User Guide", Manual #SMT-
2.0-0184, Revision 2.1,February, 1984.

4. A.Barbera, M. Fitzgerald, J. Albus,” Concepts for a Real-Time Sensory Interactive System

Architecture", Proceedings of the Fourteenth Southeastern Symposium on System Theory,

April, 1982.

5. A. Barbera, M. Fitzgerald, J. Albus, L. Haynes, ” A Language Independent Superstructure for

Implementing Real-Time Control Systems”, 1984.

6. R. Featherstone,” Position and Velocity Transformations Between Robot End-Effector Coordi-

nates and Joint Angles”, International Journal of Robotics Research, Vol 2, No. 2, Sum-
mer, 1983.

7. E. Kent, "Space Domain Control with Fitts’-Law Functions and Separation of Translation and

Orientation Trajectory Spaces”, 1984.

8. J. Toth, "Merlin Universal Controller High Speed Host Interface”, American Robot Corp.,

March 1986.

HAND
AXIS

ELBOW

WRIST
FLEX
AXIS

\ i J

WRIST
ROTATE AXIS

^S 7

(

; \K l X '

WAIST
AXIS

Figure 1: The American Robot Merlin Arm

INPUT CO^WNfi
OR 6OAL

Figure 2: Control System Inputs and Outputs

Figure 3: The Robot Origin and Coordinate Axes

* Hex Representation of Memory Addresses

Figure 4: High Speed Host Interface Architecture

Figure 5: Optimal Host Program Design

'

•

.

\

PROTOCOL BUFFER

Handshake

ADDRESS

18400 hex

NUMBER OF

16

BYTES

COMMAND BUFFER NAME ADDRESS NUMBER OF BYTES COMMAND #

Servo Parameter

s

18410 hex 60 1

Cartesian Position 18460 hex • 24 2, 13, 14
Interpolator Speed 18480 hex 4 12
Joint Position 184A0 hex 24 5
Joint Velocity 184C0 hex * 24 6
Motor Position 184E0 hex 24 • 8
Motor Velocity 500 hex 24 9

RESPONSE BUFFER NAME ADDRESS NUMBER OF BYTES COMMAND #

Cartesian Position 18600 hex 24 4
Joint Position 18620 hex 24 7
Joint Velocity 18640 hex 24 7
Motor Position 18660 hex 24 3, 8, 9
Motor Velocity 18680 hex 24 3, B, 9
Cycle Time 186A0 hex 24 3, 8. 9

Table 1 Common Memory Map

Bytes 1 and 2 : System Cycle Clock

Bytes 3 and 4 : Total Number of Commands Sent

Bytes 5 and 6 : Current Cycle Number

Byte 7 : Buffer Ready Flag

Byte 8 : Command

Bytes 9 and 10 : Echoed Command

Bytes 11 and 12: Echoed Cycle Number

Bytes 13 and 14: End Cycle Number

Bytes 15 and 16: Response Code

Table 2: Common Memory Handshake Buffer

Action

1 : Set Servo Parameters

2 : Command Cartesian Position

3 : Read Motor Position and Velocity

4 : Read Cartesian Position

5 : Command Joint Position

' 6 : Command Joint Velocity

7 : Read Joint Position and Velocity

8 : Command Motor Position With Status Returned

9 : Command Motor Velocity With Status Returned

10 : Undefined

11 : Undefined

12 : Set Speed For Cartesian Moves

13 : Joint Interpolator

14 : Straight Line Interpolator

15 : Undefined

16 : Halt Joint Angle Servoing

Table 3: HSHI Commands i

*
;

,

~

:
f>

'

-

*

.

Appendix A

The data structures and variable formats used in each of the HSHI commands are listed in this

section. In accordance with 8086 definitions, a byte is defined to be 8 bits, a character to be 1

byte, an integer to be 2 bytes and a long integer to be 4 bytes. Floating point numbers are 4

bytes long and are represented in IEEE format.

Command Number: 1

Description : Set Servo Parameters — maximum velocity, acceleration and gain for each of

the six motors.

Data Structure:

struct servo_motor{

long int maxacc; /* in revolutions per second squared*/

long int maxvel; /* in revolutions per second */

long int gain; /* a servo-loop multiplier */

};

struct servo_param{

struct servo_inotor motorl;

struct servo_motor motor2;

struct servo_motor motor3;

struct servo_motor motor4;

struct servo_motor motor5;

struct servo_motor motorfi;

};

Range of values: 0 <— maxacc <=32
0 <= maxvel <=12
0 <= gain

Default values: maxacc = 8

maxvel = 12

gain 4

Command Number: 2

Description : Command Cartesian Position

Data Structure:

struct cart_pos{

float c_xpos; /* x,y,z position in inches */

float c_ypos;

float c_zpos;

float c roll; /* roll, pitch and yaw in radians*/

float c_pitch;

float c_yaw
;

} ;

c

Calibration position is defined at 38.124,-11.9,0,0,0,0

Command Number: 3

Description : Read motor status — position, velocity and time cycle at which those

readings were obtained.

Data Structure:

struct r_mpos{ /* Motor position is expressed in encoder ticks

long int r_ml; 2000 ,ticks per motor revolution.*/

long int r_m2;

long int r_m3;

'

.

.

-

.

v

'

-Al-

long int r_m4;

long int r_m5;

long int r_m6;

} ;
Read Only Buffer— updated by AR after each motor

velocity or position command is issued

Calibration position is defined at 0,0,0,0,0,0

struct r_mvel{ /* Motor velocity in encoder ticks •/

long int r_ym 1

;

long int r_vm2;

long int r_vm3;

long int r_vm4;

long int r_vm5;

long int r„vm6;

} ;
Read Only Buffer-updated by AR after each motor

velocity or motor position command is issued

struct r_mcyc{ /• Incremental counter set by the 6809 boards

long int r_mcycl; every 4 milliseconds— useful for checking

long int r_mcyc2; timing of commands •/

long int r_mcyc3;

long int r_mcyc4;

long int r_mcyc5;

long int r_mcyc6; s

} ;
° (Read Only Buffer)

Command Number 4

Description : Read Cartesian Position

Data Structure:

struct r_cart_pos{

float r„x; /• x,y,z in inches*/

float r_y;

float r_z;

float r roll; /• roil, pitch and yaw in radians*/

float r_pitch;

float r_yaw;

} ;
(Read Only Buffer— updated only after command 4

is issued)

Command Number 5

Description : Command Joint Position

Data Structure:

struct joint_pos{

float c_jl; /* Joints 1 -6 expressed in radians •/

float c_j2;

float c j3;

float c_j4;

float c_j5;

float c_j6;

};

Calibration Position: 0,0,0,0,0,0

-A2-

Command Number 6

Description : Command Joint Velocity

Data Structure:

struct j_vel{

float c_vj 1

;

float c_vj2;

float c_vj3;

float c_vj4;

float c_vj5;

float c_vj6;

};

/•Joints 1-6 expressed in radians/second •/

Note: Velocity commanded will continuously

be sent to the arm until command 16

is issued

Command Number 7

Description : Read Joint Status

Data Structure:

struct r_jpos{ /• Joint position returned in radians*/

float r_jl;

float r_j2;

float r_j3;

float r_j4;

float r_j5;

float r_j6;

} ;
Read Only Buffer updated when joint position

or joint velocity are commanded.

struct r_jvel{ /*Joint velocity returned in radians/sec*/

float r_jvl;

float r_jv2;

float r_jv3;

float r_jv4;

float r_jv5;

float r_jv6;

} ; Read Only Buffer- updated when joint position

or joint velocity are commanded)

Command Number 8

Description : Command Motor Position

Data Structure:

struct m_pos{ /• Motor positions expressed in encoder ticks •/

long int c_ml;

long int c_m2;

long int c_m3;

long int c_m4;

long int c_m5;

long int c_m6;

};

Command Number 9

Description : Command Motor Velocity

Data Structure:

struct m_velocity{

long int c_vml;

long int c_vm2;

long int c_vm3;

/• Motor velocity expressed in ticks/sec •/

Note: Velocity commanded will continuously

be sedt to the arm until command 16

is issued

-A3-

long int c_vm4;

long int c_vn>5;

long int c_vm6;

> ;

Command Number 12

Description : Set Speed for commands 13 and 14 (interpolation commands)

Data Structure:

stryct cart_vel{

float rate; /* speed in inches per second. •/

>;
Range of input: .009 <= rate <= 30.0

Default value: 5 inches per second.

Command Number 13

Description : Joint interpolator.

Data Structure:

struct cartjpos{

float c_xpos; /* x,y,z position in inches •/

float c_ypos;

float c_zpos;

float c roll; /* roll,pitch and yaw in radians*/

float c_pitch;

float c_yaw
;

} ;

Command Number 14

Description : Straight line interpolator.

Data Structure:

struct cartjpos{

float c_xpoe; /* x,y,s position in inches */

float c_ypoe;

float c_ipos;

float enroll; /• roll,pitch and yaw in radians*/

float c_pitch;

float c_yaw
;

> ;

Command Number 16

Description : Halt servoing on joint or motor velocity commands.

Data Structure: None

'

.

:>

O e

.

'

'

f
K

Appendix B

The following C code defines the formulae used to convert joint angles, expressed in radians, into

motor encoder ticks and vice-versa. The constants defined are particular to the American Robot

Merlin Robot used in the Sensory-Interactive Robot Lab. The actual conversion code used is writ-

ten in 8087 assembly language.

Radians to Motor Encoder Ticks

rad_to_ticks(mr)

float mr[]; { /* Array mr originally contains 6 joint angles

expressed in radians. At the completion of the

routine, the array will contain the equivalent

motor encoder readings in motor tick units */

double temp;

temp -= mr[4] * 1.2;

mr[5] — mr[3] 4- temp - mr[5];

mr[4] — mr(3] - temp;

mr[0] *=- NEC_MAIN_RATIO ;

mr[l] *= MAIN_RATION ;

mr[2] *= NEG_MAIN_RATIO ;

mr[3] *=- RATIOW
;

mr[4] *= RATIOW
;

mr[5] *= RATIOW
;

}

Motor Encoder Ticks to Radians

ticks_to_rad(mr)

float mr[]; { /* Array mr contains 6 motor encoder readings.

The array will contain joint angles

in radians upon exit */

double ratioO;

double ratio2
;

double ratiol
;

.

-
"

-Bl-

ratioO = ratio2 = -1.0* MAIN_RATIO;
ratio1 = MAIN_RATIO;

mr[0] — mr[0]/ratio0;

mr[l] = mr[l]/ratiol;

mr[2] — mr[2]/ratio2;

mr[3] = mr{3]/(K*WRGR);

mr[4] = mr[4]/(K*WRGR);

mr[5] = mr[5]/(K*WRGR);

mr[5] = 2.0 • mr[3] - mr[4] -snr[5];

mr[4] — (mr[3] - mr[4]) • RATI04L;

>

The constants used in this conversion are:

#define MAINJFtATIO 35278.875

/• MAINJEiATIO = (ET*TGR)/2*PI where

ET = 2000 encoder ticks per rev.

TGR — transmission gear ratio = 48

2 PI 6.283285 •/

#define NEG.MAINJRATIO -15278.875

#define WRGR 24.0 /• wrist gear ratio •/

#define K 318.310 /• number of motor ticks per radian •/

#define RATIOW WRGR*K
#define RATI04L 0.833333333 /• gear ratio constant used in

conversion of joint 4 from encoder ticks

to radians •/

1

'

Appendix C

Following is a brief description of the major subroutines contained in the HSHI library written by
the Sensory-Interactive Robotics Group at the National Bureau of Standards.

init_common_memory();

This routine initializes the common memory handshake buffer. It must be called before any
commands are sent to the HSHI.

format_command(command number, buffer_address);

This subroutine fills the common-memory areas with the appropriate values as indicated by
"command number”. Data to be sent to the HSHI should be in ”buffer_address”. If a "read

data” command is issued, (e.g. read motors), set buffer address to NULL (or any dummy
value). Data values are converted to 68000 compatible format via a call to wordswapQ
which is described below.

EXAMPLE:
To command cartesian position 38.124,-11.9,0,0,0,0

float home[6j;

home[0] — 38.124;

homejlj— -11.9;

home[2j=horne[3]= home[4]= home[5]=0.0;

command = 2;

format_command(command,home);
® o

dump_cm_buffer();

Prints the current contents of the common memory handshake buffer. Last command
issued, number of commands issued, buffer_ready flag, and response bits can be read.

radtotic(floating pt array,long integer array);

8087 subroutine to convert six joint positions or velocities to motor ticks for faster process-

ing. Input array (radians) in floating point format is converted to long integer array (also six

values) in ticks.

tictorad(floating pt array, long integer array);

The converse of radtotic— motor encoder ticks in long integer format are converted to joint

angles in radians. Both input and output arrays must contain 6 elements.

waitbufQ

Assembly language routine to be called before reading in requested status feedback. Makes

sure HSHI has completed transferring the data to common memory before the host attempts

to read.

wordswap(buffer,bufsize);

Before and after each data transfer between the 68000 and the 8086 systems, this routine is

called to swap high and low order 16 bit quantities in 32 bit floating point numbers or long

integers. Note: this routine destroys the original contents of its input buffer. Wordswap is

called automatically by library subroutines and need never be called by the user.

read_cp(cartpos)

struct r_cart_pos *cartpos;

Command 4 (read cartesian position) is implicitly sent to the interface (using

format_command). Cartesian position data is then transferred from the common-memory
area into the local buffer cartpos. Routine wordswap() is used to format the data into 8086

form.

read_motors(motorpos,motorvel,motcyc)

struct r_mpos *motorpos;

struct r_mvel *motorvel;

struct r_mcyc *motcyc;

After command 3 (read motor status) is sent to the interface, this routine transfers the

appropriate common memory areas into the local buffers motorpos,motorvel, and motcyc.

wordswap() is used to format the data into 8086 form.

getmotorpos(motorpos, radval

)

struct r_mpos *motorpos;

float radval;

Transfer motor position from common memory buffers into array motorpos and convert it to

radians. Result is stored in array "radval”.

get_cyc_no(c_buf)

struct r_mcyc *c_buf;

Transfer the 6809 motor cycle time to buffer c_buf. The 6809 cycle number is updated

every 4 milliseconds whenever an action command is issued.

red_joints(jointpos,jointvel)

struct r_jpos *jointpos;

struct r_jvel *jointvel;

After command 7 (read joint status) is issued
,
this routine transfers the appropriate com-

mon memory areas into the local buffers jointpos and jointvel. wordswap() is called to for-

mat the data into 8086 form.

read_response();

This routine polls for the completion of the last issued command and returns the response

word set by the 68000 program. A negative value returned indicates an error.

NBS-U4A (rev. 2 »ac)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NBSIR 86-3393

2. Performing Organ. Report No. 3. Publ ication Date

JUNE 1986

4. TITLE AND SUBTITLE

The High Speed Host Interface

5. AUTHOR(S)

Marilyn Nashman

6. PERFORMING ORGANIZATION (If joint, or other than NSS, see in struct/on s)

national bureau of standards
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.

8. Type of Report & Period Covered

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP)
10.

SUPPLEMENTARY NOTES

I I Document describes a computer program; SF-185, FlPS Software Summary, is attached.

11.

ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a si gnificant

bi bl iography or literature survey, mention it here)

Uiis paper describes the High Speed Host Interface (HSHI) developed jointly by

the Robot Systems Division at the National Bureau of Standards and the

American Robot Corporation (AR) . The High Speed Host Interface provides an

interface between the manufacturer 1 s software and hardware and the user 1 s

software at the lowest level of control—motor position and velocity . It

can operate at an update rate of 256 times per second or can be used at a

cartesian level of control at an update rate of 7.5 times per second. The

paper discusses the design of HSHI and its capabilities as well as seme

possible applications for such a system.

12.

KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolon s)

ccrrrnon memory; interface; low level control; microprocessor; real time sensory

interactive control; robot controller; servo level control

13.

AVAILABILITY

Unlimited

For Official Distribution. Do Not Release to NTIS

| |

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

[~~1 Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

30

15. Price

$ 9.95

U SCOMM'OC 6043-P80

